Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|
2 |
|
ishlg.i |
|
3 |
|
ishlg.k |
|
4 |
|
ishlg.a |
|
5 |
|
ishlg.b |
|
6 |
|
ishlg.c |
|
7 |
|
hlln.1 |
|
8 |
|
hltr.d |
|
9 |
|
hltr.1 |
|
10 |
|
hltr.2 |
|
11 |
1 2 3 4 5 8 7 9
|
hlne1 |
|
12 |
1 2 3 5 6 8 7 10
|
hlne2 |
|
13 |
|
eqid |
|
14 |
7
|
ad2antrr |
|
15 |
8
|
ad2antrr |
|
16 |
4
|
ad2antrr |
|
17 |
5
|
ad2antrr |
|
18 |
6
|
ad2antrr |
|
19 |
|
simplr |
|
20 |
|
simpr |
|
21 |
1 13 2 14 15 16 17 18 19 20
|
tgbtwnexch |
|
22 |
21
|
orcd |
|
23 |
7
|
ad2antrr |
|
24 |
8
|
ad2antrr |
|
25 |
4
|
ad2antrr |
|
26 |
6
|
ad2antrr |
|
27 |
5
|
ad2antrr |
|
28 |
|
simplr |
|
29 |
|
simpr |
|
30 |
1 2 23 24 25 26 27 28 29
|
tgbtwnconn3 |
|
31 |
1 2 3 5 6 8 7
|
ishlg |
|
32 |
10 31
|
mpbid |
|
33 |
32
|
simp3d |
|
34 |
33
|
adantr |
|
35 |
22 30 34
|
mpjaodan |
|
36 |
7
|
ad2antrr |
|
37 |
8
|
ad2antrr |
|
38 |
5
|
ad2antrr |
|
39 |
4
|
ad2antrr |
|
40 |
6
|
ad2antrr |
|
41 |
32
|
simp1d |
|
42 |
41
|
necomd |
|
43 |
42
|
ad2antrr |
|
44 |
|
simplr |
|
45 |
|
simpr |
|
46 |
1 2 36 37 38 39 40 43 44 45
|
tgbtwnconn1 |
|
47 |
7
|
ad2antrr |
|
48 |
8
|
ad2antrr |
|
49 |
6
|
ad2antrr |
|
50 |
5
|
ad2antrr |
|
51 |
4
|
ad2antrr |
|
52 |
|
simpr |
|
53 |
|
simplr |
|
54 |
1 13 2 47 48 49 50 51 52 53
|
tgbtwnexch |
|
55 |
54
|
olcd |
|
56 |
33
|
adantr |
|
57 |
46 55 56
|
mpjaodan |
|
58 |
1 2 3 4 5 8 7
|
ishlg |
|
59 |
9 58
|
mpbid |
|
60 |
59
|
simp3d |
|
61 |
35 57 60
|
mpjaodan |
|
62 |
1 2 3 4 6 8 7
|
ishlg |
|
63 |
11 12 61 62
|
mpbir3and |
|