Metamath Proof Explorer


Theorem hmeocld

Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X = J
Assertion hmeocld F J Homeo K A X A Clsd J F A Clsd K

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X = J
2 hmeocnvcn F J Homeo K F -1 K Cn J
3 2 adantr F J Homeo K A X F -1 K Cn J
4 imacnvcnv F -1 -1 A = F A
5 cnclima F -1 K Cn J A Clsd J F -1 -1 A Clsd K
6 4 5 eqeltrrid F -1 K Cn J A Clsd J F A Clsd K
7 6 ex F -1 K Cn J A Clsd J F A Clsd K
8 3 7 syl F J Homeo K A X A Clsd J F A Clsd K
9 hmeocn F J Homeo K F J Cn K
10 9 adantr F J Homeo K A X F J Cn K
11 cnclima F J Cn K F A Clsd K F -1 F A Clsd J
12 11 ex F J Cn K F A Clsd K F -1 F A Clsd J
13 10 12 syl F J Homeo K A X F A Clsd K F -1 F A Clsd J
14 eqid K = K
15 1 14 hmeof1o F J Homeo K F : X 1-1 onto K
16 f1of1 F : X 1-1 onto K F : X 1-1 K
17 15 16 syl F J Homeo K F : X 1-1 K
18 f1imacnv F : X 1-1 K A X F -1 F A = A
19 17 18 sylan F J Homeo K A X F -1 F A = A
20 19 eleq1d F J Homeo K A X F -1 F A Clsd J A Clsd J
21 13 20 sylibd F J Homeo K A X F A Clsd K A Clsd J
22 8 21 impbid F J Homeo K A X A Clsd J F A Clsd K