Metamath Proof Explorer


Theorem hmeocls

Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X = J
Assertion hmeocls F J Homeo K A X cls K F A = F cls J A

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X = J
2 hmeocnvcn F J Homeo K F -1 K Cn J
3 1 cncls2i F -1 K Cn J A X cls K F -1 -1 A F -1 -1 cls J A
4 2 3 sylan F J Homeo K A X cls K F -1 -1 A F -1 -1 cls J A
5 imacnvcnv F -1 -1 A = F A
6 5 fveq2i cls K F -1 -1 A = cls K F A
7 imacnvcnv F -1 -1 cls J A = F cls J A
8 4 6 7 3sstr3g F J Homeo K A X cls K F A F cls J A
9 hmeocn F J Homeo K F J Cn K
10 1 cnclsi F J Cn K A X F cls J A cls K F A
11 9 10 sylan F J Homeo K A X F cls J A cls K F A
12 8 11 eqssd F J Homeo K A X cls K F A = F cls J A