Database
BASIC TOPOLOGY
Topology
Homeomorphisms
hmeocls
Next ⟩
hmeontr
Metamath Proof Explorer
Ascii
Unicode
Theorem
hmeocls
Description:
Homeomorphisms preserve closures.
(Contributed by
Mario Carneiro
, 25-Aug-2015)
Ref
Expression
Hypothesis
hmeoopn.1
⊢
X
=
⋃
J
Assertion
hmeocls
⊢
F
∈
J
Homeo
K
∧
A
⊆
X
→
cls
⁡
K
⁡
F
A
=
F
cls
⁡
J
⁡
A
Proof
Step
Hyp
Ref
Expression
1
hmeoopn.1
⊢
X
=
⋃
J
2
hmeocnvcn
⊢
F
∈
J
Homeo
K
→
F
-1
∈
K
Cn
J
3
1
cncls2i
⊢
F
-1
∈
K
Cn
J
∧
A
⊆
X
→
cls
⁡
K
⁡
F
-1
-1
A
⊆
F
-1
-1
cls
⁡
J
⁡
A
4
2
3
sylan
⊢
F
∈
J
Homeo
K
∧
A
⊆
X
→
cls
⁡
K
⁡
F
-1
-1
A
⊆
F
-1
-1
cls
⁡
J
⁡
A
5
imacnvcnv
⊢
F
-1
-1
A
=
F
A
6
5
fveq2i
⊢
cls
⁡
K
⁡
F
-1
-1
A
=
cls
⁡
K
⁡
F
A
7
imacnvcnv
⊢
F
-1
-1
cls
⁡
J
⁡
A
=
F
cls
⁡
J
⁡
A
8
4
6
7
3sstr3g
⊢
F
∈
J
Homeo
K
∧
A
⊆
X
→
cls
⁡
K
⁡
F
A
⊆
F
cls
⁡
J
⁡
A
9
hmeocn
⊢
F
∈
J
Homeo
K
→
F
∈
J
Cn
K
10
1
cnclsi
⊢
F
∈
J
Cn
K
∧
A
⊆
X
→
F
cls
⁡
J
⁡
A
⊆
cls
⁡
K
⁡
F
A
11
9
10
sylan
⊢
F
∈
J
Homeo
K
∧
A
⊆
X
→
F
cls
⁡
J
⁡
A
⊆
cls
⁡
K
⁡
F
A
12
8
11
eqssd
⊢
F
∈
J
Homeo
K
∧
A
⊆
X
→
cls
⁡
K
⁡
F
A
=
F
cls
⁡
J
⁡
A