Metamath Proof Explorer


Theorem hmeocnv

Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmeocnv F J Homeo K F -1 K Homeo J

Proof

Step Hyp Ref Expression
1 hmeocnvcn F J Homeo K F -1 K Cn J
2 hmeocn F J Homeo K F J Cn K
3 eqid J = J
4 eqid K = K
5 3 4 cnf F J Cn K F : J K
6 frel F : J K Rel F
7 2 5 6 3syl F J Homeo K Rel F
8 dfrel2 Rel F F -1 -1 = F
9 7 8 sylib F J Homeo K F -1 -1 = F
10 9 2 eqeltrd F J Homeo K F -1 -1 J Cn K
11 ishmeo F -1 K Homeo J F -1 K Cn J F -1 -1 J Cn K
12 1 10 11 sylanbrc F J Homeo K F -1 K Homeo J