Metamath Proof Explorer


Theorem hmeocnvb

Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmeocnvb Rel F F -1 J Homeo K F K Homeo J

Proof

Step Hyp Ref Expression
1 hmeocnv F -1 J Homeo K F -1 -1 K Homeo J
2 dfrel2 Rel F F -1 -1 = F
3 eleq1 F -1 -1 = F F -1 -1 K Homeo J F K Homeo J
4 2 3 sylbi Rel F F -1 -1 K Homeo J F K Homeo J
5 1 4 syl5ib Rel F F -1 J Homeo K F K Homeo J
6 hmeocnv F K Homeo J F -1 J Homeo K
7 5 6 impbid1 Rel F F -1 J Homeo K F K Homeo J