Metamath Proof Explorer


Theorem hmeoco

Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmeoco F J Homeo K G K Homeo L G F J Homeo L

Proof

Step Hyp Ref Expression
1 hmeocn F J Homeo K F J Cn K
2 hmeocn G K Homeo L G K Cn L
3 cnco F J Cn K G K Cn L G F J Cn L
4 1 2 3 syl2an F J Homeo K G K Homeo L G F J Cn L
5 cnvco G F -1 = F -1 G -1
6 hmeocnvcn G K Homeo L G -1 L Cn K
7 hmeocnvcn F J Homeo K F -1 K Cn J
8 cnco G -1 L Cn K F -1 K Cn J F -1 G -1 L Cn J
9 6 7 8 syl2anr F J Homeo K G K Homeo L F -1 G -1 L Cn J
10 5 9 eqeltrid F J Homeo K G K Homeo L G F -1 L Cn J
11 ishmeo G F J Homeo L G F J Cn L G F -1 L Cn J
12 4 10 11 sylanbrc F J Homeo K G K Homeo L G F J Homeo L