Metamath Proof Explorer


Theorem hmeof1o

Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses hmeof1o.1 X = J
hmeof1o.2 Y = K
Assertion hmeof1o F J Homeo K F : X 1-1 onto Y

Proof

Step Hyp Ref Expression
1 hmeof1o.1 X = J
2 hmeof1o.2 Y = K
3 hmeocn F J Homeo K F J Cn K
4 cntop1 F J Cn K J Top
5 1 toptopon J Top J TopOn X
6 4 5 sylib F J Cn K J TopOn X
7 cntop2 F J Cn K K Top
8 2 toptopon K Top K TopOn Y
9 7 8 sylib F J Cn K K TopOn Y
10 6 9 jca F J Cn K J TopOn X K TopOn Y
11 3 10 syl F J Homeo K J TopOn X K TopOn Y
12 hmeof1o2 J TopOn X K TopOn Y F J Homeo K F : X 1-1 onto Y
13 12 3expia J TopOn X K TopOn Y F J Homeo K F : X 1-1 onto Y
14 11 13 mpcom F J Homeo K F : X 1-1 onto Y