Metamath Proof Explorer


Theorem hmeofval

Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmeofval J Homeo K = f J Cn K | f -1 K Cn J

Proof

Step Hyp Ref Expression
1 oveq12 j = J k = K j Cn k = J Cn K
2 oveq12 k = K j = J k Cn j = K Cn J
3 2 ancoms j = J k = K k Cn j = K Cn J
4 3 eleq2d j = J k = K f -1 k Cn j f -1 K Cn J
5 1 4 rabeqbidv j = J k = K f j Cn k | f -1 k Cn j = f J Cn K | f -1 K Cn J
6 df-hmeo Homeo = j Top , k Top f j Cn k | f -1 k Cn j
7 ovex J Cn K V
8 7 rabex f J Cn K | f -1 K Cn J V
9 5 6 8 ovmpoa J Top K Top J Homeo K = f J Cn K | f -1 K Cn J
10 6 mpondm0 ¬ J Top K Top J Homeo K =
11 cntop1 f J Cn K J Top
12 cntop2 f J Cn K K Top
13 11 12 jca f J Cn K J Top K Top
14 13 a1d f J Cn K f -1 K Cn J J Top K Top
15 14 con3rr3 ¬ J Top K Top f J Cn K ¬ f -1 K Cn J
16 15 ralrimiv ¬ J Top K Top f J Cn K ¬ f -1 K Cn J
17 rabeq0 f J Cn K | f -1 K Cn J = f J Cn K ¬ f -1 K Cn J
18 16 17 sylibr ¬ J Top K Top f J Cn K | f -1 K Cn J =
19 10 18 eqtr4d ¬ J Top K Top J Homeo K = f J Cn K | f -1 K Cn J
20 9 19 pm2.61i J Homeo K = f J Cn K | f -1 K Cn J