Metamath Proof Explorer


Theorem hmeoima

Description: The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmeoima FJHomeoKAJFAK

Proof

Step Hyp Ref Expression
1 hmeocnvcn FJHomeoKF-1KCnJ
2 imacnvcnv F-1-1A=FA
3 cnima F-1KCnJAJF-1-1AK
4 2 3 eqeltrrid F-1KCnJAJFAK
5 1 4 sylan FJHomeoKAJFAK