Metamath Proof Explorer


Theorem hmeontr

Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X = J
Assertion hmeontr F J Homeo K A X int K F A = F int J A

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X = J
2 hmeocn F J Homeo K F J Cn K
3 2 adantr F J Homeo K A X F J Cn K
4 imassrn F A ran F
5 eqid K = K
6 1 5 hmeof1o F J Homeo K F : X 1-1 onto K
7 6 adantr F J Homeo K A X F : X 1-1 onto K
8 f1ofo F : X 1-1 onto K F : X onto K
9 forn F : X onto K ran F = K
10 7 8 9 3syl F J Homeo K A X ran F = K
11 4 10 sseqtrid F J Homeo K A X F A K
12 5 cnntri F J Cn K F A K F -1 int K F A int J F -1 F A
13 3 11 12 syl2anc F J Homeo K A X F -1 int K F A int J F -1 F A
14 f1of1 F : X 1-1 onto K F : X 1-1 K
15 7 14 syl F J Homeo K A X F : X 1-1 K
16 f1imacnv F : X 1-1 K A X F -1 F A = A
17 15 16 sylancom F J Homeo K A X F -1 F A = A
18 17 fveq2d F J Homeo K A X int J F -1 F A = int J A
19 13 18 sseqtrd F J Homeo K A X F -1 int K F A int J A
20 f1ofun F : X 1-1 onto K Fun F
21 7 20 syl F J Homeo K A X Fun F
22 cntop2 F J Cn K K Top
23 3 22 syl F J Homeo K A X K Top
24 5 ntrss3 K Top F A K int K F A K
25 23 11 24 syl2anc F J Homeo K A X int K F A K
26 25 10 sseqtrrd F J Homeo K A X int K F A ran F
27 funimass1 Fun F int K F A ran F F -1 int K F A int J A int K F A F int J A
28 21 26 27 syl2anc F J Homeo K A X F -1 int K F A int J A int K F A F int J A
29 19 28 mpd F J Homeo K A X int K F A F int J A
30 hmeocnvcn F J Homeo K F -1 K Cn J
31 1 cnntri F -1 K Cn J A X F -1 -1 int J A int K F -1 -1 A
32 30 31 sylan F J Homeo K A X F -1 -1 int J A int K F -1 -1 A
33 imacnvcnv F -1 -1 int J A = F int J A
34 imacnvcnv F -1 -1 A = F A
35 34 fveq2i int K F -1 -1 A = int K F A
36 32 33 35 3sstr3g F J Homeo K A X F int J A int K F A
37 29 36 eqssd F J Homeo K A X int K F A = F int J A