Metamath Proof Explorer


Theorem hmeoopn

Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X = J
Assertion hmeoopn F J Homeo K A X A J F A K

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X = J
2 hmeoima F J Homeo K A J F A K
3 2 ex F J Homeo K A J F A K
4 3 adantr F J Homeo K A X A J F A K
5 hmeocn F J Homeo K F J Cn K
6 cnima F J Cn K F A K F -1 F A J
7 6 ex F J Cn K F A K F -1 F A J
8 5 7 syl F J Homeo K F A K F -1 F A J
9 8 adantr F J Homeo K A X F A K F -1 F A J
10 eqid K = K
11 1 10 hmeof1o F J Homeo K F : X 1-1 onto K
12 f1of1 F : X 1-1 onto K F : X 1-1 K
13 11 12 syl F J Homeo K F : X 1-1 K
14 f1imacnv F : X 1-1 K A X F -1 F A = A
15 13 14 sylan F J Homeo K A X F -1 F A = A
16 15 eleq1d F J Homeo K A X F -1 F A J A J
17 9 16 sylibd F J Homeo K A X F A K A J
18 4 17 impbid F J Homeo K A X A J F A K