Metamath Proof Explorer


Theorem hmeoqtop

Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion hmeoqtop F J Homeo K K = J qTop F

Proof

Step Hyp Ref Expression
1 hmeocn F J Homeo K F J Cn K
2 cntop2 F J Cn K K Top
3 1 2 syl F J Homeo K K Top
4 toptopon2 K Top K TopOn K
5 3 4 sylib F J Homeo K K TopOn K
6 eqid J = J
7 eqid K = K
8 6 7 hmeof1o F J Homeo K F : J 1-1 onto K
9 f1ofo F : J 1-1 onto K F : J onto K
10 forn F : J onto K ran F = K
11 8 9 10 3syl F J Homeo K ran F = K
12 hmeoima F J Homeo K x J F x K
13 5 1 11 12 qtopomap F J Homeo K K = J qTop F