Database
BASIC TOPOLOGY
Topology
Homeomorphisms
hmeoqtop
Next ⟩
hmph
Metamath Proof Explorer
Ascii
Unicode
Theorem
hmeoqtop
Description:
A homeomorphism is a quotient map.
(Contributed by
Mario Carneiro
, 25-Aug-2015)
Ref
Expression
Assertion
hmeoqtop
⊢
F
∈
J
Homeo
K
→
K
=
J
qTop
F
Proof
Step
Hyp
Ref
Expression
1
hmeocn
⊢
F
∈
J
Homeo
K
→
F
∈
J
Cn
K
2
cntop2
⊢
F
∈
J
Cn
K
→
K
∈
Top
3
1
2
syl
⊢
F
∈
J
Homeo
K
→
K
∈
Top
4
toptopon2
⊢
K
∈
Top
↔
K
∈
TopOn
⁡
⋃
K
5
3
4
sylib
⊢
F
∈
J
Homeo
K
→
K
∈
TopOn
⁡
⋃
K
6
eqid
⊢
⋃
J
=
⋃
J
7
eqid
⊢
⋃
K
=
⋃
K
8
6
7
hmeof1o
⊢
F
∈
J
Homeo
K
→
F
:
⋃
J
⟶
1-1 onto
⋃
K
9
f1ofo
⊢
F
:
⋃
J
⟶
1-1 onto
⋃
K
→
F
:
⋃
J
⟶
onto
⋃
K
10
forn
⊢
F
:
⋃
J
⟶
onto
⋃
K
→
ran
⁡
F
=
⋃
K
11
8
9
10
3syl
⊢
F
∈
J
Homeo
K
→
ran
⁡
F
=
⋃
K
12
hmeoima
⊢
F
∈
J
Homeo
K
∧
x
∈
J
→
F
x
∈
K
13
5
1
11
12
qtopomap
⊢
F
∈
J
Homeo
K
→
K
=
J
qTop
F