Metamath Proof Explorer


Theorem hmop

Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion hmop T HrmOp A B A ih T B = T A ih B

Proof

Step Hyp Ref Expression
1 elhmop T HrmOp T : x y x ih T y = T x ih y
2 1 simprbi T HrmOp x y x ih T y = T x ih y
3 2 3ad2ant1 T HrmOp A B x y x ih T y = T x ih y
4 oveq1 x = A x ih T y = A ih T y
5 fveq2 x = A T x = T A
6 5 oveq1d x = A T x ih y = T A ih y
7 4 6 eqeq12d x = A x ih T y = T x ih y A ih T y = T A ih y
8 fveq2 y = B T y = T B
9 8 oveq2d y = B A ih T y = A ih T B
10 oveq2 y = B T A ih y = T A ih B
11 9 10 eqeq12d y = B A ih T y = T A ih y A ih T B = T A ih B
12 7 11 rspc2v A B x y x ih T y = T x ih y A ih T B = T A ih B
13 12 3adant1 T HrmOp A B x y x ih T y = T x ih y A ih T B = T A ih B
14 3 13 mpd T HrmOp A B A ih T B = T A ih B