Metamath Proof Explorer


Theorem hmopadj

Description: A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopadj T HrmOp adj h T = T

Proof

Step Hyp Ref Expression
1 hmopf T HrmOp T :
2 hmop T HrmOp x y x ih T y = T x ih y
3 2 eqcomd T HrmOp x y T x ih y = x ih T y
4 3 3expib T HrmOp x y T x ih y = x ih T y
5 4 ralrimivv T HrmOp x y T x ih y = x ih T y
6 adjeq T : T : x y T x ih y = x ih T y adj h T = T
7 1 1 5 6 syl3anc T HrmOp adj h T = T