Metamath Proof Explorer


Theorem hmopadj2

Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in Halmos p. 41. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopadj2 T dom adj h T HrmOp adj h T = T

Proof

Step Hyp Ref Expression
1 hmopadj T HrmOp adj h T = T
2 dmadjop T dom adj h T :
3 2 adantr T dom adj h adj h T = T T :
4 adj1 T dom adj h x y x ih T y = adj h T x ih y
5 4 3expb T dom adj h x y x ih T y = adj h T x ih y
6 5 adantlr T dom adj h adj h T = T x y x ih T y = adj h T x ih y
7 fveq1 adj h T = T adj h T x = T x
8 7 oveq1d adj h T = T adj h T x ih y = T x ih y
9 8 ad2antlr T dom adj h adj h T = T x y adj h T x ih y = T x ih y
10 6 9 eqtrd T dom adj h adj h T = T x y x ih T y = T x ih y
11 10 ralrimivva T dom adj h adj h T = T x y x ih T y = T x ih y
12 elhmop T HrmOp T : x y x ih T y = T x ih y
13 3 11 12 sylanbrc T dom adj h adj h T = T T HrmOp
14 13 ex T dom adj h adj h T = T T HrmOp
15 1 14 impbid2 T dom adj h T HrmOp adj h T = T