Metamath Proof Explorer


Theorem hmopbdoptHIL

Description: A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion hmopbdoptHIL T HrmOp T BndLinOp

Proof

Step Hyp Ref Expression
1 hmoplin T HrmOp T LinOp
2 hmop T HrmOp x y x ih T y = T x ih y
3 2 3expib T HrmOp x y x ih T y = T x ih y
4 3 ralrimivv T HrmOp x y x ih T y = T x ih y
5 hilhl + norm CHil OLD
6 df-hba = BaseSet + norm
7 eqid + norm = + norm
8 7 hhip ih = 𝑖OLD + norm
9 eqid + norm LnOp + norm = + norm LnOp + norm
10 7 9 hhlnoi LinOp = + norm LnOp + norm
11 eqid + norm BLnOp + norm = + norm BLnOp + norm
12 7 11 hhbloi BndLinOp = + norm BLnOp + norm
13 6 8 10 12 htth + norm CHil OLD T LinOp x y x ih T y = T x ih y T BndLinOp
14 5 13 mp3an1 T LinOp x y x ih T y = T x ih y T BndLinOp
15 1 4 14 syl2anc T HrmOp T BndLinOp