Metamath Proof Explorer


Theorem hmopco

Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopco T HrmOp U HrmOp T U = U T T U HrmOp

Proof

Step Hyp Ref Expression
1 hmopf T HrmOp T :
2 hmopf U HrmOp U :
3 fco T : U : T U :
4 1 2 3 syl2an T HrmOp U HrmOp T U :
5 4 3adant3 T HrmOp U HrmOp T U = U T T U :
6 fvco3 U : y T U y = T U y
7 2 6 sylan U HrmOp y T U y = T U y
8 7 oveq2d U HrmOp y x ih T U y = x ih T U y
9 8 ad2ant2l T HrmOp U HrmOp x y x ih T U y = x ih T U y
10 simpll T HrmOp U HrmOp x y T HrmOp
11 simprl T HrmOp U HrmOp x y x
12 2 ffvelrnda U HrmOp y U y
13 12 ad2ant2l T HrmOp U HrmOp x y U y
14 hmop T HrmOp x U y x ih T U y = T x ih U y
15 10 11 13 14 syl3anc T HrmOp U HrmOp x y x ih T U y = T x ih U y
16 simplr T HrmOp U HrmOp x y U HrmOp
17 1 ffvelrnda T HrmOp x T x
18 17 ad2ant2r T HrmOp U HrmOp x y T x
19 simprr T HrmOp U HrmOp x y y
20 hmop U HrmOp T x y T x ih U y = U T x ih y
21 16 18 19 20 syl3anc T HrmOp U HrmOp x y T x ih U y = U T x ih y
22 9 15 21 3eqtrd T HrmOp U HrmOp x y x ih T U y = U T x ih y
23 fvco3 T : x U T x = U T x
24 1 23 sylan T HrmOp x U T x = U T x
25 24 oveq1d T HrmOp x U T x ih y = U T x ih y
26 25 ad2ant2r T HrmOp U HrmOp x y U T x ih y = U T x ih y
27 22 26 eqtr4d T HrmOp U HrmOp x y x ih T U y = U T x ih y
28 27 3adantl3 T HrmOp U HrmOp T U = U T x y x ih T U y = U T x ih y
29 fveq1 T U = U T T U x = U T x
30 29 oveq1d T U = U T T U x ih y = U T x ih y
31 30 3ad2ant3 T HrmOp U HrmOp T U = U T T U x ih y = U T x ih y
32 31 adantr T HrmOp U HrmOp T U = U T x y T U x ih y = U T x ih y
33 28 32 eqtr4d T HrmOp U HrmOp T U = U T x y x ih T U y = T U x ih y
34 33 ralrimivva T HrmOp U HrmOp T U = U T x y x ih T U y = T U x ih y
35 elhmop T U HrmOp T U : x y x ih T U y = T U x ih y
36 5 34 35 sylanbrc T HrmOp U HrmOp T U = U T T U HrmOp