Metamath Proof Explorer


Theorem hmopd

Description: The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopd T HrmOp U HrmOp T - op U HrmOp

Proof

Step Hyp Ref Expression
1 hmopf T HrmOp T :
2 hmopf U HrmOp U :
3 honegsub T : U : T + op -1 · op U = T - op U
4 1 2 3 syl2an T HrmOp U HrmOp T + op -1 · op U = T - op U
5 neg1rr 1
6 hmopm 1 U HrmOp -1 · op U HrmOp
7 5 6 mpan U HrmOp -1 · op U HrmOp
8 hmops T HrmOp -1 · op U HrmOp T + op -1 · op U HrmOp
9 7 8 sylan2 T HrmOp U HrmOp T + op -1 · op U HrmOp
10 4 9 eqeltrrd T HrmOp U HrmOp T - op U HrmOp