| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmopf |
|
| 2 |
|
simplll |
|
| 3 |
|
hvmulcl |
|
| 4 |
|
hvaddcl |
|
| 5 |
3 4
|
sylan |
|
| 6 |
5
|
adantll |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
|
hmop |
|
| 10 |
9
|
eqcomd |
|
| 11 |
2 7 8 10
|
syl3anc |
|
| 12 |
|
simprl |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
simprr |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
simplr |
|
| 17 |
1
|
ffvelcdmda |
|
| 18 |
17
|
adantlr |
|
| 19 |
18
|
adantllr |
|
| 20 |
|
hiassdi |
|
| 21 |
13 15 16 19 20
|
syl22anc |
|
| 22 |
1
|
ffvelcdmda |
|
| 23 |
22
|
adantrl |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
1
|
ffvelcdmda |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
adantllr |
|
| 28 |
|
hiassdi |
|
| 29 |
13 24 27 8 28
|
syl22anc |
|
| 30 |
|
hmop |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
3expa |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33
|
adantlrl |
|
| 35 |
34
|
adantlr |
|
| 36 |
|
hmop |
|
| 37 |
36
|
eqcomd |
|
| 38 |
37
|
3expa |
|
| 39 |
38
|
adantllr |
|
| 40 |
35 39
|
oveq12d |
|
| 41 |
29 40
|
eqtr2d |
|
| 42 |
11 21 41
|
3eqtrd |
|
| 43 |
42
|
ralrimiva |
|
| 44 |
|
ffvelcdm |
|
| 45 |
5 44
|
sylan2 |
|
| 46 |
45
|
anassrs |
|
| 47 |
|
ffvelcdm |
|
| 48 |
|
hvmulcl |
|
| 49 |
47 48
|
sylan2 |
|
| 50 |
49
|
an12s |
|
| 51 |
50
|
adantr |
|
| 52 |
|
ffvelcdm |
|
| 53 |
52
|
adantlr |
|
| 54 |
|
hvaddcl |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
|
hial2eq |
|
| 57 |
46 55 56
|
syl2anc |
|
| 58 |
1 57
|
sylanl1 |
|
| 59 |
43 58
|
mpbid |
|
| 60 |
59
|
ralrimiva |
|
| 61 |
60
|
ralrimivva |
|
| 62 |
|
ellnop |
|
| 63 |
1 61 62
|
sylanbrc |
|