Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
|
2 |
|
simplll |
|
3 |
|
hvmulcl |
|
4 |
|
hvaddcl |
|
5 |
3 4
|
sylan |
|
6 |
5
|
adantll |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
|
hmop |
|
10 |
9
|
eqcomd |
|
11 |
2 7 8 10
|
syl3anc |
|
12 |
|
simprl |
|
13 |
12
|
ad2antrr |
|
14 |
|
simprr |
|
15 |
14
|
ad2antrr |
|
16 |
|
simplr |
|
17 |
1
|
ffvelrnda |
|
18 |
17
|
adantlr |
|
19 |
18
|
adantllr |
|
20 |
|
hiassdi |
|
21 |
13 15 16 19 20
|
syl22anc |
|
22 |
1
|
ffvelrnda |
|
23 |
22
|
adantrl |
|
24 |
23
|
ad2antrr |
|
25 |
1
|
ffvelrnda |
|
26 |
25
|
adantr |
|
27 |
26
|
adantllr |
|
28 |
|
hiassdi |
|
29 |
13 24 27 8 28
|
syl22anc |
|
30 |
|
hmop |
|
31 |
30
|
eqcomd |
|
32 |
31
|
3expa |
|
33 |
32
|
oveq2d |
|
34 |
33
|
adantlrl |
|
35 |
34
|
adantlr |
|
36 |
|
hmop |
|
37 |
36
|
eqcomd |
|
38 |
37
|
3expa |
|
39 |
38
|
adantllr |
|
40 |
35 39
|
oveq12d |
|
41 |
29 40
|
eqtr2d |
|
42 |
11 21 41
|
3eqtrd |
|
43 |
42
|
ralrimiva |
|
44 |
|
ffvelrn |
|
45 |
5 44
|
sylan2 |
|
46 |
45
|
anassrs |
|
47 |
|
ffvelrn |
|
48 |
|
hvmulcl |
|
49 |
47 48
|
sylan2 |
|
50 |
49
|
an12s |
|
51 |
50
|
adantr |
|
52 |
|
ffvelrn |
|
53 |
52
|
adantlr |
|
54 |
|
hvaddcl |
|
55 |
51 53 54
|
syl2anc |
|
56 |
|
hial2eq |
|
57 |
46 55 56
|
syl2anc |
|
58 |
1 57
|
sylanl1 |
|
59 |
43 58
|
mpbid |
|
60 |
59
|
ralrimiva |
|
61 |
60
|
ralrimivva |
|
62 |
|
ellnop |
|
63 |
1 61 62
|
sylanbrc |
|