Metamath Proof Explorer


Theorem hmopre

Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopre T HrmOp A T A ih A

Proof

Step Hyp Ref Expression
1 hmop T HrmOp A A A ih T A = T A ih A
2 1 3anidm23 T HrmOp A A ih T A = T A ih A
3 2 eqcomd T HrmOp A T A ih A = A ih T A
4 hmopf T HrmOp T :
5 4 ffvelrnda T HrmOp A T A
6 hire T A A T A ih A T A ih A = A ih T A
7 5 6 sylancom T HrmOp A T A ih A T A ih A = A ih T A
8 3 7 mpbird T HrmOp A T A ih A