Metamath Proof Explorer


Theorem hmphdis

Description: Homeomorphisms preserve topological discretion. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmphdis.1 X = J
Assertion hmphdis J 𝒫 A J = 𝒫 X

Proof

Step Hyp Ref Expression
1 hmphdis.1 X = J
2 pwuni J 𝒫 J
3 1 pweqi 𝒫 X = 𝒫 J
4 2 3 sseqtrri J 𝒫 X
5 4 a1i J 𝒫 A J 𝒫 X
6 hmph J 𝒫 A J Homeo 𝒫 A
7 n0 J Homeo 𝒫 A f f J Homeo 𝒫 A
8 elpwi x 𝒫 X x X
9 imassrn f x ran f
10 unipw 𝒫 A = A
11 10 eqcomi A = 𝒫 A
12 1 11 hmeof1o f J Homeo 𝒫 A f : X 1-1 onto A
13 f1of f : X 1-1 onto A f : X A
14 frn f : X A ran f A
15 12 13 14 3syl f J Homeo 𝒫 A ran f A
16 15 adantr f J Homeo 𝒫 A x X ran f A
17 9 16 sstrid f J Homeo 𝒫 A x X f x A
18 vex f V
19 18 imaex f x V
20 19 elpw f x 𝒫 A f x A
21 17 20 sylibr f J Homeo 𝒫 A x X f x 𝒫 A
22 1 hmeoopn f J Homeo 𝒫 A x X x J f x 𝒫 A
23 21 22 mpbird f J Homeo 𝒫 A x X x J
24 23 ex f J Homeo 𝒫 A x X x J
25 8 24 syl5 f J Homeo 𝒫 A x 𝒫 X x J
26 25 ssrdv f J Homeo 𝒫 A 𝒫 X J
27 26 exlimiv f f J Homeo 𝒫 A 𝒫 X J
28 7 27 sylbi J Homeo 𝒫 A 𝒫 X J
29 6 28 sylbi J 𝒫 A 𝒫 X J
30 5 29 eqssd J 𝒫 A J = 𝒫 X