Metamath Proof Explorer


Theorem hmphen

Description: Homeomorphisms preserve the cardinality of the topologies. (Contributed by FL, 1-Jun-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion hmphen J K J K

Proof

Step Hyp Ref Expression
1 hmph J K J Homeo K
2 n0 J Homeo K f f J Homeo K
3 hmeocn f J Homeo K f J Cn K
4 cntop1 f J Cn K J Top
5 3 4 syl f J Homeo K J Top
6 cntop2 f J Cn K K Top
7 3 6 syl f J Homeo K K Top
8 eqid x J f x = x J f x
9 8 hmeoimaf1o f J Homeo K x J f x : J 1-1 onto K
10 f1oen2g J Top K Top x J f x : J 1-1 onto K J K
11 5 7 9 10 syl3anc f J Homeo K J K
12 11 exlimiv f f J Homeo K J K
13 2 12 sylbi J Homeo K J K
14 1 13 sylbi J K J K