Metamath Proof Explorer


Theorem hmphen2

Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypotheses cmphaushmeo.1 X = J
cmphaushmeo.2 Y = K
Assertion hmphen2 J K X Y

Proof

Step Hyp Ref Expression
1 cmphaushmeo.1 X = J
2 cmphaushmeo.2 Y = K
3 hmph J K J Homeo K
4 n0 J Homeo K f f J Homeo K
5 1 2 hmeof1o f J Homeo K f : X 1-1 onto Y
6 f1oen3g f J Homeo K f : X 1-1 onto Y X Y
7 5 6 mpdan f J Homeo K X Y
8 7 exlimiv f f J Homeo K X Y
9 4 8 sylbi J Homeo K X Y
10 3 9 sylbi J K X Y