Metamath Proof Explorer


Theorem hmpher

Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmpher Er Top

Proof

Step Hyp Ref Expression
1 df-hmph = Homeo -1 V 1 𝑜
2 cnvimass Homeo -1 V 1 𝑜 dom Homeo
3 hmeofn Homeo Fn Top × Top
4 3 fndmi dom Homeo = Top × Top
5 2 4 sseqtri Homeo -1 V 1 𝑜 Top × Top
6 1 5 eqsstri Top × Top
7 relxp Rel Top × Top
8 relss Top × Top Rel Top × Top Rel
9 6 7 8 mp2 Rel
10 hmphsym x y y x
11 hmphtr x y y z x z
12 hmphref x Top x x
13 hmphtop1 x x x Top
14 12 13 impbii x Top x x
15 9 10 11 14 iseri Er Top