Metamath Proof Explorer


Theorem hmphindis

Description: Homeomorphisms preserve topological indiscreteness. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmphdis.1 X = J
Assertion hmphindis J A J = X

Proof

Step Hyp Ref Expression
1 hmphdis.1 X = J
2 dfsn2 =
3 indislem I A = A
4 preq2 I A = I A =
5 4 2 eqtr4di I A = I A =
6 3 5 eqtr3id I A = A =
7 6 breq2d I A = J A J
8 7 biimpac J A I A = J
9 hmph0 J J =
10 8 9 sylib J A I A = J =
11 10 unieqd J A I A = J =
12 0ex V
13 12 unisn =
14 13 eqcomi =
15 11 1 14 3eqtr4g J A I A = X =
16 15 preq2d J A I A = X =
17 2 10 16 3eqtr4a J A I A = J = X
18 hmphen J A J A
19 necom I A I A
20 fvex I A V
21 pr2nelem V I A V I A I A 2 𝑜
22 12 20 21 mp3an12 I A I A 2 𝑜
23 19 22 sylbi I A I A 2 𝑜
24 23 adantl J A I A I A 2 𝑜
25 3 24 eqbrtrrid J A I A A 2 𝑜
26 entr J A A 2 𝑜 J 2 𝑜
27 18 25 26 syl2an2r J A I A J 2 𝑜
28 hmphtop1 J A J Top
29 28 adantr J A I A J Top
30 1 toptopon J Top J TopOn X
31 29 30 sylib J A I A J TopOn X
32 en2top J TopOn X J 2 𝑜 J = X X
33 31 32 syl J A I A J 2 𝑜 J = X X
34 27 33 mpbid J A I A J = X X
35 34 simpld J A I A J = X
36 17 35 pm2.61dane J A J = X