Metamath Proof Explorer


Theorem hmphtop

Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion hmphtop J K J Top K Top

Proof

Step Hyp Ref Expression
1 df-hmph = Homeo -1 V 1 𝑜
2 cnvimass Homeo -1 V 1 𝑜 dom Homeo
3 hmeofn Homeo Fn Top × Top
4 fndm Homeo Fn Top × Top dom Homeo = Top × Top
5 3 4 ax-mp dom Homeo = Top × Top
6 2 5 sseqtri Homeo -1 V 1 𝑜 Top × Top
7 1 6 eqsstri Top × Top
8 7 brel J K J Top K Top