Metamath Proof Explorer


Theorem hmphtr

Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmphtr J K K L J L

Proof

Step Hyp Ref Expression
1 hmph J K J Homeo K
2 hmph K L K Homeo L
3 n0 J Homeo K f f J Homeo K
4 n0 K Homeo L g g K Homeo L
5 exdistrv f g f J Homeo K g K Homeo L f f J Homeo K g g K Homeo L
6 hmeoco f J Homeo K g K Homeo L g f J Homeo L
7 hmphi g f J Homeo L J L
8 6 7 syl f J Homeo K g K Homeo L J L
9 8 exlimivv f g f J Homeo K g K Homeo L J L
10 5 9 sylbir f f J Homeo K g g K Homeo L J L
11 3 4 10 syl2anb J Homeo K K Homeo L J L
12 1 2 11 syl2anb J K K L J L