Metamath Proof Explorer


Theorem ho02i

Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of Beran p. 95. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis ho0.1 T :
Assertion ho02i x y x ih T y = 0 T = 0 hop

Proof

Step Hyp Ref Expression
1 ho0.1 T :
2 ralcom x y x ih T y = 0 y x x ih T y = 0
3 1 ffvelrni y T y
4 hial02 T y x x ih T y = 0 T y = 0
5 hial0 T y x T y ih x = 0 T y = 0
6 4 5 bitr4d T y x x ih T y = 0 x T y ih x = 0
7 3 6 syl y x x ih T y = 0 x T y ih x = 0
8 7 ralbiia y x x ih T y = 0 y x T y ih x = 0
9 1 ho01i y x T y ih x = 0 T = 0 hop
10 2 8 9 3bitri x y x ih T y = 0 T = 0 hop