Metamath Proof Explorer


Theorem ho0coi

Description: Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 T :
Assertion ho0coi 0 hop T = 0 hop

Proof

Step Hyp Ref Expression
1 hoaddid1.1 T :
2 1 ffvelrni x T x
3 ho0val T x 0 hop T x = 0
4 2 3 syl x 0 hop T x = 0
5 ho0f 0 hop :
6 5 1 hocoi x 0 hop T x = 0 hop T x
7 ho0val x 0 hop x = 0
8 4 6 7 3eqtr4d x 0 hop T x = 0 hop x
9 8 rgen x 0 hop T x = 0 hop x
10 5 1 hocofi 0 hop T :
11 10 5 hoeqi x 0 hop T x = 0 hop x 0 hop T = 0 hop
12 9 11 mpbi 0 hop T = 0 hop