Metamath Proof Explorer


Theorem hoadd12i

Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R :
hods.2 S :
hods.3 T :
Assertion hoadd12i R + op S + op T = S + op R + op T

Proof

Step Hyp Ref Expression
1 hods.1 R :
2 hods.2 S :
3 hods.3 T :
4 1 2 hoaddcomi R + op S = S + op R
5 4 oveq1i R + op S + op T = S + op R + op T
6 1 2 3 hoaddassi R + op S + op T = R + op S + op T
7 2 1 3 hoaddassi S + op R + op T = S + op R + op T
8 5 6 7 3eqtr3i R + op S + op T = S + op R + op T