Metamath Proof Explorer


Theorem hoadd32i

Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R :
hods.2 S :
hods.3 T :
Assertion hoadd32i R + op S + op T = R + op T + op S

Proof

Step Hyp Ref Expression
1 hods.1 R :
2 hods.2 S :
3 hods.3 T :
4 2 3 hoaddcomi S + op T = T + op S
5 4 oveq2i R + op S + op T = R + op T + op S
6 1 2 3 hoaddassi R + op S + op T = R + op S + op T
7 1 3 2 hoaddassi R + op T + op S = R + op T + op S
8 5 6 7 3eqtr4i R + op S + op T = R + op T + op S