Metamath Proof Explorer


Theorem hoaddid1

Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hoaddid1 T : T + op 0 hop = T

Proof

Step Hyp Ref Expression
1 oveq1 T = if T : T 0 hop T + op 0 hop = if T : T 0 hop + op 0 hop
2 id T = if T : T 0 hop T = if T : T 0 hop
3 1 2 eqeq12d T = if T : T 0 hop T + op 0 hop = T if T : T 0 hop + op 0 hop = if T : T 0 hop
4 ho0f 0 hop :
5 4 elimf if T : T 0 hop :
6 5 hoaddid1i if T : T 0 hop + op 0 hop = if T : T 0 hop
7 3 6 dedth T : T + op 0 hop = T