Metamath Proof Explorer


Theorem hoaddid1i

Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 T :
Assertion hoaddid1i T + op 0 hop = T

Proof

Step Hyp Ref Expression
1 hoaddid1.1 T :
2 ho0f 0 hop :
3 hosval T : 0 hop : x T + op 0 hop x = T x + 0 hop x
4 1 2 3 mp3an12 x T + op 0 hop x = T x + 0 hop x
5 ho0val x 0 hop x = 0
6 5 oveq2d x T x + 0 hop x = T x + 0
7 1 ffvelrni x T x
8 ax-hvaddid T x T x + 0 = T x
9 7 8 syl x T x + 0 = T x
10 4 6 9 3eqtrd x T + op 0 hop x = T x
11 10 rgen x T + op 0 hop x = T x
12 1 2 hoaddcli T + op 0 hop :
13 12 1 hoeqi x T + op 0 hop x = T x T + op 0 hop = T
14 11 13 mpbi T + op 0 hop = T