Metamath Proof Explorer


Theorem hoaddsubassi

Description: Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1 R :
hoaddsubass.2 S :
hoaddsubass.3 T :
Assertion hoaddsubassi R + op S - op T = R + op S - op T

Proof

Step Hyp Ref Expression
1 hoaddsubass.1 R :
2 hoaddsubass.2 S :
3 hoaddsubass.3 T :
4 hoaddsubass R : S : T : R + op S - op T = R + op S - op T
5 1 2 3 4 mp3an R + op S - op T = R + op S - op T