Metamath Proof Explorer


Theorem hocadddiri

Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R :
hods.2 S :
hods.3 T :
Assertion hocadddiri R + op S T = R T + op S T

Proof

Step Hyp Ref Expression
1 hods.1 R :
2 hods.2 S :
3 hods.3 T :
4 1 2 hoaddcli R + op S :
5 4 3 hocoi x R + op S T x = R + op S T x
6 1 3 hocofi R T :
7 2 3 hocofi S T :
8 hosval R T : S T : x R T + op S T x = R T x + S T x
9 6 7 8 mp3an12 x R T + op S T x = R T x + S T x
10 3 ffvelrni x T x
11 hosval R : S : T x R + op S T x = R T x + S T x
12 1 2 11 mp3an12 T x R + op S T x = R T x + S T x
13 10 12 syl x R + op S T x = R T x + S T x
14 1 3 hocoi x R T x = R T x
15 2 3 hocoi x S T x = S T x
16 14 15 oveq12d x R T x + S T x = R T x + S T x
17 13 16 eqtr4d x R + op S T x = R T x + S T x
18 9 17 eqtr4d x R T + op S T x = R + op S T x
19 5 18 eqtr4d x R + op S T x = R T + op S T x
20 19 rgen x R + op S T x = R T + op S T x
21 4 3 hocofi R + op S T :
22 6 7 hoaddcli R T + op S T :
23 21 22 hoeqi x R + op S T x = R T + op S T x R + op S T = R T + op S T
24 20 23 mpbi R + op S T = R T + op S T