Metamath Proof Explorer


Theorem hodcl

Description: Closure of the difference of two Hilbert space operators. (Contributed by NM, 15-Nov-2002) (New usage is discouraged.)

Ref Expression
Assertion hodcl S : T : A S - op T A

Proof

Step Hyp Ref Expression
1 hodval S : T : A S - op T A = S A - T A
2 ffvelrn S : A S A
3 2 3adant2 S : T : A S A
4 ffvelrn T : A T A
5 4 3adant1 S : T : A T A
6 hvsubcl S A T A S A - T A
7 3 5 6 syl2anc S : T : A S A - T A
8 1 7 eqeltrd S : T : A S - op T A
9 8 3expa S : T : A S - op T A