Metamath Proof Explorer


Theorem hoddii

Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri does not require linearity.) (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hoddi.1 R LinOp
hoddi.2 S :
hoddi.3 T :
Assertion hoddii R S - op T = R S - op R T

Proof

Step Hyp Ref Expression
1 hoddi.1 R LinOp
2 hoddi.2 S :
3 hoddi.3 T :
4 2 ffvelrni x S x
5 3 ffvelrni x T x
6 1 lnopsubi S x T x R S x - T x = R S x - R T x
7 4 5 6 syl2anc x R S x - T x = R S x - R T x
8 hodval S : T : x S - op T x = S x - T x
9 2 3 8 mp3an12 x S - op T x = S x - T x
10 9 fveq2d x R S - op T x = R S x - T x
11 1 lnopfi R :
12 11 2 hocoi x R S x = R S x
13 11 3 hocoi x R T x = R T x
14 12 13 oveq12d x R S x - R T x = R S x - R T x
15 7 10 14 3eqtr4d x R S - op T x = R S x - R T x
16 2 3 hosubcli S - op T :
17 11 16 hocoi x R S - op T x = R S - op T x
18 11 2 hocofi R S :
19 11 3 hocofi R T :
20 hodval R S : R T : x R S - op R T x = R S x - R T x
21 18 19 20 mp3an12 x R S - op R T x = R S x - R T x
22 15 17 21 3eqtr4d x R S - op T x = R S - op R T x
23 22 rgen x R S - op T x = R S - op R T x
24 11 16 hocofi R S - op T :
25 18 19 hosubcli R S - op R T :
26 24 25 hoeqi x R S - op T x = R S - op R T x R S - op T = R S - op R T
27 23 26 mpbi R S - op T = R S - op R T