Metamath Proof Explorer


Theorem hodid

Description: Difference of a Hilbert space operator from itself. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hodid T : T - op T = 0 hop

Proof

Step Hyp Ref Expression
1 id T = if T : T 0 hop T = if T : T 0 hop
2 1 1 oveq12d T = if T : T 0 hop T - op T = if T : T 0 hop - op if T : T 0 hop
3 2 eqeq1d T = if T : T 0 hop T - op T = 0 hop if T : T 0 hop - op if T : T 0 hop = 0 hop
4 ho0f 0 hop :
5 4 elimf if T : T 0 hop :
6 5 hodidi if T : T 0 hop - op if T : T 0 hop = 0 hop
7 3 6 dedth T : T - op T = 0 hop