Metamath Proof Explorer


Theorem hodidi

Description: Difference of a Hilbert space operator from itself. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 T :
Assertion hodidi T - op T = 0 hop

Proof

Step Hyp Ref Expression
1 hoaddid1.1 T :
2 1 hoaddid1i T + op 0 hop = T
3 ho0f 0 hop :
4 1 1 3 hodsi T - op T = 0 hop T + op 0 hop = T
5 2 4 mpbir T - op T = 0 hop