Metamath Proof Explorer


Theorem hodmval

Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hodmval S : T : S - op T = x S x - T x

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 1 elmap S S :
3 1 1 elmap T T :
4 fveq1 f = S f x = S x
5 4 oveq1d f = S f x - g x = S x - g x
6 5 mpteq2dv f = S x f x - g x = x S x - g x
7 fveq1 g = T g x = T x
8 7 oveq2d g = T S x - g x = S x - T x
9 8 mpteq2dv g = T x S x - g x = x S x - T x
10 df-hodif - op = f , g x f x - g x
11 1 mptex x S x - T x V
12 6 9 10 11 ovmpo S T S - op T = x S x - T x
13 2 3 12 syl2anbr S : T : S - op T = x S x - T x