Metamath Proof Explorer


Theorem hodsi

Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R :
hods.2 S :
hods.3 T :
Assertion hodsi R - op S = T S + op T = R

Proof

Step Hyp Ref Expression
1 hods.1 R :
2 hods.2 S :
3 hods.3 T :
4 1 ffvelrni x R x
5 2 ffvelrni x S x
6 3 ffvelrni x T x
7 hvsubadd R x S x T x R x - S x = T x S x + T x = R x
8 4 5 6 7 syl3anc x R x - S x = T x S x + T x = R x
9 hodval R : S : x R - op S x = R x - S x
10 1 2 9 mp3an12 x R - op S x = R x - S x
11 10 eqeq1d x R - op S x = T x R x - S x = T x
12 hosval S : T : x S + op T x = S x + T x
13 2 3 12 mp3an12 x S + op T x = S x + T x
14 13 eqeq1d x S + op T x = R x S x + T x = R x
15 8 11 14 3bitr4d x R - op S x = T x S + op T x = R x
16 15 ralbiia x R - op S x = T x x S + op T x = R x
17 1 2 hosubcli R - op S :
18 17 3 hoeqi x R - op S x = T x R - op S = T
19 2 3 hoaddcli S + op T :
20 19 1 hoeqi x S + op T x = R x S + op T = R
21 16 18 20 3bitr3i R - op S = T S + op T = R