Metamath Proof Explorer


Theorem hoeq1

Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq1 S : T : x y S x ih y = T x ih y S = T

Proof

Step Hyp Ref Expression
1 ffvelrn S : x S x
2 ffvelrn T : x T x
3 hial2eq S x T x y S x ih y = T x ih y S x = T x
4 1 2 3 syl2an S : x T : x y S x ih y = T x ih y S x = T x
5 4 anandirs S : T : x y S x ih y = T x ih y S x = T x
6 5 ralbidva S : T : x y S x ih y = T x ih y x S x = T x
7 ffn S : S Fn
8 ffn T : T Fn
9 eqfnfv S Fn T Fn S = T x S x = T x
10 7 8 9 syl2an S : T : S = T x S x = T x
11 6 10 bitr4d S : T : x y S x ih y = T x ih y S = T