Metamath Proof Explorer


Theorem hoid1i

Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 T :
Assertion hoid1i T I op = T

Proof

Step Hyp Ref Expression
1 hoaddid1.1 T :
2 df-iop I op = proj
3 2 coeq2i T I op = T proj
4 helch C
5 4 pjfi proj :
6 1 5 hocoi x T proj x = T proj x
7 pjch1 x proj x = x
8 7 fveq2d x T proj x = T x
9 6 8 eqtrd x T proj x = T x
10 9 rgen x T proj x = T x
11 1 5 hocofi T proj :
12 11 1 hoeqi x T proj x = T x T proj = T
13 10 12 mpbi T proj = T
14 3 13 eqtri T I op = T