Metamath Proof Explorer


Theorem hoid1ri

Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 T :
Assertion hoid1ri I op T = T

Proof

Step Hyp Ref Expression
1 hoaddid1.1 T :
2 df-iop I op = proj
3 2 coeq1i I op T = proj T
4 helch C
5 4 pjfi proj :
6 5 1 hocoi x proj T x = proj T x
7 1 ffvelrni x T x
8 pjch1 T x proj T x = T x
9 7 8 syl x proj T x = T x
10 6 9 eqtrd x proj T x = T x
11 10 rgen x proj T x = T x
12 5 1 hocofi proj T :
13 12 1 hoeqi x proj T x = T x proj T = T
14 11 13 mpbi proj T = T
15 3 14 eqtri I op T = T