Metamath Proof Explorer


Theorem homacd

Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homahom.h H = Hom a C
Assertion homacd F X H Y cod a F = Y

Proof

Step Hyp Ref Expression
1 homahom.h H = Hom a C
2 df-coda cod a = 2 nd 1 st
3 2 fveq1i cod a F = 2 nd 1 st F
4 fo1st 1 st : V onto V
5 fof 1 st : V onto V 1 st : V V
6 4 5 ax-mp 1 st : V V
7 elex F X H Y F V
8 fvco3 1 st : V V F V 2 nd 1 st F = 2 nd 1 st F
9 6 7 8 sylancr F X H Y 2 nd 1 st F = 2 nd 1 st F
10 3 9 eqtrid F X H Y cod a F = 2 nd 1 st F
11 1 homarel Rel X H Y
12 1st2ndbr Rel X H Y F X H Y 1 st F X H Y 2 nd F
13 11 12 mpan F X H Y 1 st F X H Y 2 nd F
14 1 homa1 1 st F X H Y 2 nd F 1 st F = X Y
15 13 14 syl F X H Y 1 st F = X Y
16 15 fveq2d F X H Y 2 nd 1 st F = 2 nd X Y
17 eqid Base C = Base C
18 1 17 homarcl2 F X H Y X Base C Y Base C
19 op2ndg X Base C Y Base C 2 nd X Y = Y
20 18 19 syl F X H Y 2 nd X Y = Y
21 10 16 20 3eqtrd F X H Y cod a F = Y