Metamath Proof Explorer


Theorem homadmcd

Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homahom.h H = Hom a C
Assertion homadmcd F X H Y F = X Y 2 nd F

Proof

Step Hyp Ref Expression
1 homahom.h H = Hom a C
2 1 homarel Rel X H Y
3 1st2nd Rel X H Y F X H Y F = 1 st F 2 nd F
4 2 3 mpan F X H Y F = 1 st F 2 nd F
5 1st2ndbr Rel X H Y F X H Y 1 st F X H Y 2 nd F
6 2 5 mpan F X H Y 1 st F X H Y 2 nd F
7 1 homa1 1 st F X H Y 2 nd F 1 st F = X Y
8 6 7 syl F X H Y 1 st F = X Y
9 8 opeq1d F X H Y 1 st F 2 nd F = X Y 2 nd F
10 4 9 eqtrd F X H Y F = X Y 2 nd F
11 df-ot X Y 2 nd F = X Y 2 nd F
12 10 11 eqtr4di F X H Y F = X Y 2 nd F