Metamath Proof Explorer


Theorem homaf

Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H = Hom a C
homafval.b B = Base C
homafval.c φ C Cat
Assertion homaf φ H : B × B 𝒫 B × B × V

Proof

Step Hyp Ref Expression
1 homarcl.h H = Hom a C
2 homafval.b B = Base C
3 homafval.c φ C Cat
4 eqid Hom C = Hom C
5 1 2 3 4 homafval φ H = x B × B x × Hom C x
6 snssi x B × B x B × B
7 6 adantl φ x B × B x B × B
8 ssv Hom C x V
9 xpss12 x B × B Hom C x V x × Hom C x B × B × V
10 7 8 9 sylancl φ x B × B x × Hom C x B × B × V
11 snex x V
12 fvex Hom C x V
13 11 12 xpex x × Hom C x V
14 13 elpw x × Hom C x 𝒫 B × B × V x × Hom C x B × B × V
15 10 14 sylibr φ x B × B x × Hom C x 𝒫 B × B × V
16 5 15 fmpt3d φ H : B × B 𝒫 B × B × V