Metamath Proof Explorer


Theorem homafval

Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H = Hom a C
homafval.b B = Base C
homafval.c φ C Cat
homafval.j J = Hom C
Assertion homafval φ H = x B × B x × J x

Proof

Step Hyp Ref Expression
1 homarcl.h H = Hom a C
2 homafval.b B = Base C
3 homafval.c φ C Cat
4 homafval.j J = Hom C
5 fveq2 c = C Base c = Base C
6 5 2 eqtr4di c = C Base c = B
7 6 sqxpeqd c = C Base c × Base c = B × B
8 fveq2 c = C Hom c = Hom C
9 8 4 eqtr4di c = C Hom c = J
10 9 fveq1d c = C Hom c x = J x
11 10 xpeq2d c = C x × Hom c x = x × J x
12 7 11 mpteq12dv c = C x Base c × Base c x × Hom c x = x B × B x × J x
13 df-homa Hom a = c Cat x Base c × Base c x × Hom c x
14 2 fvexi B V
15 14 14 xpex B × B V
16 15 mptex x B × B x × J x V
17 12 13 16 fvmpt C Cat Hom a C = x B × B x × J x
18 3 17 syl φ Hom a C = x B × B x × J x
19 1 18 eqtrid φ H = x B × B x × J x