Metamath Proof Explorer


Theorem homahom2

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h H = Hom a C
homahom.j J = Hom C
Assertion homahom2 Z X H Y F F X J Y

Proof

Step Hyp Ref Expression
1 homahom.h H = Hom a C
2 homahom.j J = Hom C
3 df-br Z X H Y F Z F X H Y
4 eqid Base C = Base C
5 1 homarcl Z F X H Y C Cat
6 1 4 homarcl2 Z F X H Y X Base C Y Base C
7 6 simpld Z F X H Y X Base C
8 6 simprd Z F X H Y Y Base C
9 1 4 5 2 7 8 elhoma Z F X H Y Z X H Y F Z = X Y F X J Y
10 3 9 sylbi Z X H Y F Z X H Y F Z = X Y F X J Y
11 10 ibi Z X H Y F Z = X Y F X J Y
12 11 simprd Z X H Y F F X J Y