Metamath Proof Explorer


Theorem homarcl2

Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h H = Hom a C
homarcl2.b B = Base C
Assertion homarcl2 F X H Y X B Y B

Proof

Step Hyp Ref Expression
1 homahom.h H = Hom a C
2 homarcl2.b B = Base C
3 elfvdm F H X Y X Y dom H
4 df-ov X H Y = H X Y
5 3 4 eleq2s F X H Y X Y dom H
6 1 homarcl F X H Y C Cat
7 1 2 6 homaf F X H Y H : B × B 𝒫 B × B × V
8 7 fdmd F X H Y dom H = B × B
9 5 8 eleqtrd F X H Y X Y B × B
10 opelxp X Y B × B X B Y B
11 9 10 sylib F X H Y X B Y B